Recognition of human activities using SVM multi-class classifier

نویسندگان

  • Huimin Qian
  • Yaobin Mao
  • Wenbo Xiang
  • Zhiquan Wang
چکیده

Even great efforts have been made for decades, the recognition of human activities is still an unmature technology that attracted plenty of people in computer vision. In this paper, a system framework is presented to recognize multiple kinds of activities from videos by an SVMmulti-class classifier with a binary tree architecture. The framework is composed of three functionally cascaded modules: (a) detecting and locating people by non-parameter background subtraction approach, (b) extracting various of features such as local ones from the minimum bounding boxes of human blobs in each frames and a newly defined global one, contour coding of the motion energy image (CCMEI), and (c) recognizing activities of people by SVM multi-class classifier whose structure is determined by a clustering process. The thought of hierarchical classification is introduced and multiple SVMs are aggregated to accomplish the recognition of actions. Each SVM in the multi-class classifier is trained separately to achieve its best classification performance by choosing proper features before they are aggregated. Experimental results both on a homebrewed activity data set and the public Schüldt’s data set show the perfect identification performance and high robustness of the system. 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Activity Recognition Using Histogram of Oriented Gradient Pattern History

Human activity recognition is an important task in computer vision because it has many application areas such as, healthcare, security, entertainment, and tactical scenarios. This paper presents a methodology to automatically recognize human activity from input video stream using Histogram of Oriented Gradient Pattern History (HOGPH) features and SVM classifier. For this purpose, the proposed s...

متن کامل

Multi-class SVM Classifier With Neural Network For Handwritten Character Recognition

The paper describes the process of character recognition using the Multi Class SVM classifier combined with a neural Network approach. The character recognition techniques or the OCRs are either a printed document recognition or the handwritten character recognition. SVM (Support Vector Machine) classifiers often have superior recognition rates in comparison to other classification methods. In ...

متن کامل

Hand Gesture Recognition using fusion of SIFT and HoG with SVM as a Classifier

This paper focuses on the hand gesture recognition using the various feature extraction techniques and SVM as a classifier. Her we have proposed the hybrid approach using SIFT and HoG combined as a feature extraction technique and gestures classification done using SVM linear kernel function.The accumulative multi class SVM method is employed in order to obtain a classification of the multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010